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Gas-assisted �uid displacement in a circular tube
and a rectangular channel
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SUMMARY

In this paper the amount of liquid left inside of a circular tube and a rectangular channel when displaced
by another immiscible �uid are determined by solving the full creeping-motion equations. The exact
continuity of stress on the free surface is employed with a ;nite di<erence method. In order to solve the
equations, the steady-state shape of the interface is guessed and the normal stress boundary condition
is dropped. The equations based on a stream function-vorticity formulation are solved with the aid of
elliptic grid generation. The computed results are compared with the experimental results of Taylor
(J. Fluid Mech. 1961; 10:161), the theoretical results of Reinelt and Sa<man (SIAM J. Sci. Stat.
Comput. 1985; 6:542) and our experimental data. The computed results are in close agreement with
our experimental data and those of previous investigators. Copyright ? 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

The motion of long bubbles into Newtonian �uids con;ned in horizontal cylindrical tubes
or channels of rectangular cross-section (Hele–Shaw cell) has been studied for several years.
When a less viscous �uid displaces a more viscous �uid from the gap between two closely
spaced parallel plates, the interface develops a tongue-like shape with the less viscous �uid
penetrating into the more viscous �uid. Similarly, when air is forced into one end of a circular
tube containing a viscous liquid, it forms a round-ended column or bullet-like shape which
travels down the tube forcing some liquid out at the far end and leaving a fraction of the
liquid m, in the form of an annular layer covering the wall. In the case of a square channel
the shape of the less viscous �uid penetrating into the more viscous �uid depends on the
velocity of the penetrating �uid. If the velocity of the penetrating �uid (called the bubble
or ;nger hereafter) is larger than a certain limiting value, the bubble assumes a bullet-like
shape; otherwise, the bubble conforms to the shape of the square channel. In a rectangular
channel, if the capillary number, Ca=� ub=	 is not too large, a single steady-state tongue-like

∗Correspondence to: F. Kami2sli, Department of Chemical Engineering, Faculty of Engineering, University of Firat,
23279 ElaziGg, Turkey.

†E-mail: fkamisli@;rat.edu.tr
Received 17 December 1998

Copyright ? 2002 John Wiley & Sons, Ltd. Revised 10 May 2000



408 F. KAMIS2LI AND M. E. RYAN

shape moves through the cell with constant velocity ub, where � is the dynamic viscosity of
the driven liquid, ub is the bubble velocity, and 	 is the gas–liquid interfacial tension. In a
circular tube or square channel the bullet-like shape of the bubble persists even at very large
capillary number. In other words, the ;ngering e<ect does not occur in the case of a long
bubble advancing in either a circular tube or a square channel at large capillary numbers.
Fairbrother and Stubbs [1] performed the ;rst experiments to determine the amount of

liquid left inside of a tube when it is displaced by another immiscible �uid. They determined
the �ow rate of the liquid by measuring the motion of the gas interface in the tube. When
the tube is not completely ;lled with the liquid, the gas interface will move faster than the
average velocity of the liquid due to the deposition of a thin ;lm of liquid on the walls of
the tube and if the tube is long enough, blowout will take place somewhere within the tube.
An empirical correlation for the fraction of the liquid deposited on the walls of the tube was
formulated as follows:

m=(ub − u)=ub=1:0Ca1=2 = (� ub=	)1=2

where u is mean velocity of �uid ahead of the bubble. This result was found satisfactory for
capillary numbers between 10−3 and 10−2.
Isothermal gas-assisted displacement of Newtonian liquids in circular tubes was also ex-

perimentally studied by Taylor [2]. By plotting the fraction of the liquid as a function of
the capillary number, he collapsed the data onto a single curve, and showed that this frac-
tion asymptotically approached the value of 0.56 for a capillary number nearly equal to two.
Cox [3; 4] extended Taylor’s [2] result to capillary numbers up to 10 and showed that the
limiting fraction of the liquid deposited on the walls of the tube was approximately 0.6. His
theoretical analysis resulted in a fourth-order di<erential equation in terms of the stream func-
tion. Inertial and gravitational forces were neglected. The streamlines were assumed to be a
speci;c function of the spatial coordinates. The governing equations were expressed in matrix
form and solved numerically.
Bretherton [5] also undertook a theoretical analysis of this problem for circular capillaries.

He found an approximate solution to this problem for a circular cross-section by the method
of matched asymptotic expansions. The idea behind this theoretical treatment is that for suM-
ciently small Ca the viscous stresses appreciably modify the static pro;le of the bubble only
very near to the wall. In this region the lubrication approximation gives a good description
of the �ow ;eld and of the interface pro;le. In the center of the capillary, the static pro;le
is valid and there is a region of overlap in which the two solutions are matched. Using the
lubrication approximation which requires quasi-unidirectional �ow in the thin liquid ;lm and
assuming the slope of the �uid–�uid interface to be small, it can be shown that the velocity
pro;le is parabolic. The boundary conditions for steady �ow are the no slip condition at the
capillary wall, and tangential stress equal to zero at the �uid interface. The bubble is assumed
to be inviscid resulting in a constant pressure within the bubble. The pressure in the liquid
;lm is given by the pressure drop across the interface which is approximated by the Young–
Laplace equation. Bretherton [5] also systematically explored a number of possible causes for
the discrepancy between the analysis and experimental data. However, none of these could
provide a satisfactory explanation. Schwartz et al. [6] considered the same problem and found
some di<erences in liquid ;lm thickness for suMciently long bubbles, as compared to short
bubbles.
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Another experimental study by Marchessault and Mason [7] used air bubbles in a dilute
aqueous solution of potassium chloride. Film thicknesses were inferred from resistance mea-
surements and were found to be substantially larger than those reported by Bretherton [5].
The residual wetting layer of the displaced liquid will vary with the velocity of advance
of the interface. Park and Homsy [8] demonstrated that the two-dimensional version of the
Bretherton [5] problem is an appropriate local solution to describe the phenomenon.
Numerical studies of capillary-tube displacement of a wetting liquid by a semi-in;nite

inviscid slug of gas have been presented. Both Reinelt and Sa<man [9] using a ;nite-di<erence
method and Shen and Udell [10] using a ;nite element approach solved the full creeping-
motion equations with the continuity of stress imposed exactly on the free surface. Reinelt and
Sa<man [9] obtained a numerical solution that is in close agreement with experimental data
for a Newtonian liquid. They investigated the fraction of the liquid deposited on the walls of
a channel as well as a circular tube, as a function of the capillary number. The Navier–Stokes
equation was expressed in terms of the stream function and vorticity in order to solve the
problem numerically.
Ratulowski and Chang [11] investigated a single discrete bubble and the motion of a long

bubble in a circular tube and square channel. They determined the fraction of liquid deposited
on the walls of the tube or channel and the pressure drop across the bubble front. According to
their study, a single isolated bubble resembles an in;nitely long bubble in terms of determining
the ;lm thickness and pressure drop across the bubble front if the length of the bubble exceeds
the channel width. Their analysis is only valid for Ca¿3× 10−3.
Kolb and Cerro [12] studied the isothermal gas-assisted displacement of a Newtonian liquid

from a channel of square cross-section and showed that the liquid deposited on the wall of the
square tube also approaches an asymptotic limit at high capillary numbers. Above Ca=0:1
the gas forms a circular hollow core and thicker liquid deposition; below Ca=0:1 the hollow
core takes on the square cross-section of the tube as the deposition thickness is reduced. The
above study was extended (Kolb and Cerro [13]) by adding the lubrication approximation
for intermediate to large capillary numbers where the �ow is axisymmetric. In their work
the ;lm thickness on the walls of the square channel can be predicted as a function of
capillary number since the velocity pro;le of the �uid �owing between the bubble and the
square channel walls is known. It was claimed that the lubrication approximation solution
is in good agreement with experimental data for values of capillary number between 0.7
and 2.0.
Unlike previous investigators, Poslinski et al. [14] investigated non-Newtonian �uids de-

posited on the walls of a tube. They found that the fraction of the non-Newtonian �uid
deposited on the walls is less than that of a corresponding Newtonian �uid at low capil-
lary number. At higher capillary number the fraction of the liquid deposited asymptotically
increases and approaches a value of 0.58.
Ro and Homsy [15] performed an asymptotic analysis of the gas-assisted displacement of

a non-Newtonian �uid in a Hele–Shaw cell. The e<ects of normal stress and shear stress
thinning in determining the ;lm thickness and the pressure jump across the interface were
examined. Viscoelastic �uids were modeled by an Oldroyd-B constitutive equation and the
solutions for the constant ;lm thickness region and the static meniscus region were matched
in the transition regime as for the Newtonian case (see Park and Homsy [8]).
The planar geometry or Hele–Shaw cell consists of two closely separated parallel plates

having a distance 2d between them. The sides of this rectangular channel are at a distance
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2Zo apart where d�Zo. Parameter � is de;ned as (thickness of gas bubble)=(distance between
the plates). For the cylindrical tube � is de;ned as (diameter of the bubble)=(diameter of the
tube). In the rectangular channel the thickness of the tongue-like shape is 2�d and its width
is 2�wZo, where the parameter �w is equal to (width of the bubble)=(width of the rectangular
channel).
The determination of the value of � and �w has been a subject of much interest. The

determination of �w as a function of capillary number, Ca, for di<erent cell aspect ratios,
Zo=d, has been examined experimentally by Sa<man and Taylor [16], Pitts [17], and Tabeling
et al. [18]. Sa<man and Taylor [16] and Pitts [17] found that the value of �w decreases
monotonically to 0.5 when the bubble velocity is increased. In contrast, Tabeling et al. [18]
reported that the value of �w never decreases to 0.5 when the bubble velocity is increased.
The problem was reconsidered by McLean and Sa<man [19] by including surface tension
e<ects due to the lateral curvature of the interface of the advancing ;nger. In their numerical
study the value of �w was close to 0.5 at large bubble velocity which is in good agreement
with the experimental data. At low velocities (i.e. Cb¡100), the agreement with experiment
was ambiguous since the ;nger sizes predicted by the theory were signi;cantly below those
actually measured, where

Cb=12Ca(Zo=d)2

They found that the incorporation of surface tension and cell aspect ratio did not remedy
or reduce the disagreement between theory and experiment in terms of calculating the value
of �w as a function of Cb. The approach of Bretherton [5] was reconsidered by Park and
Homsy [8] in the horizontal Hele–Shaw cell at very low capillary number. The problem was
solved using a perturbation method with an asymptotic expansion of Ca1=3 and the ratio of the
gap width to the transverse characteristic length �e=d=Zo as small quantities. They obtained
relationships between �, Ca, and �e for calculating the ;lm thickness and pressure jump across
the bubble front. The resulting expressions were compared with the results of Bretherton [5]
and Landau and Levich [20] and were considered to give improved results.
Reinelt [21] extended his earlier work by determining the perturbation solution of the ax-

isymmetric �ow problem for small values of Ca and �=d=R. In his study, some of the
boundary conditions were improved by incorporating the ;lm thickness into the kinematic
boundary condition and taking into account the dependence of Qp on the capillary num-
ber. The problem was also numerically solved using a conformal mapping method and the
numerical results were presented in another paper (Reinelt [22]). Although the inclusion of
the e<ects of the ;lm thickness variation and the lateral and transverse curvature on the
interface boundary conditions improved the quantitative agreement between the experimen-
tal and numerical results, it did not remove the discrepancy associated with di<erent ;nger
widths.
Other relevant literature pertains to applications that are related to gas–liquid �ows through

porous media and in process equipment, cavitation in the narrow passages of bearings, and
the coating of monolithic structures for the manufacture of automotive catalytic converters
(Sa<man and Taylor [16], Taylor [23], Fernandes et al. [24], and Kolb et al. [25]).
In this paper a di<erent numerical approach is developed to solve the free surface problem

and it is applied to the gas-assisted liquid displacement in the circular tube and Hele–Shaw
cell. The stream function, vorticity and treatment of some of the boundary conditions used
in this paper were also used by Reinelt and Sa<man [9]. However, Reinelt and Sa<man
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used a chimera mesh (cartesian and curvilinear) in order to solve the problem. Unlike a
chimera mesh, in this paper, a unique elliptic grid is used to overcome this diMculty. Also
the problem is examined experimentally in order to determine the e<ect of non-Newtonian
�uid rheology such as shear thinning and viscoelasticity on the liquid fraction deposited on
the wall as a function of capillary number (see Kami2sli [26]). However, the experimental
results are not presented here except for the residual liquid ;lm thickness of Newtonian and
some non-Newtonian �uids as a function of capillary number.

EXPERIMENTAL

The experimental arrangement consists of a gas supply tank, pressure transducer, transparent
plastic or glass tubes=channels and associated valves and ;ttings as shown in Figure 1. The
volume of the gas supply tank was chosen to be very large in comparison to the volume
of the gas within the tube or channel in order to minimize pressure �uctuations during the
experiments. Pressurized air was used as the gas and was supplied by a local compressed air
line and monitored with a pressure gauge mounted on the tank. The desired pressure level
can be accurately adjusted by keeping valve B open and D closed and reading the pressure
from the pressure transducer for a particular setting of valve C. The line pressure is also
independently measured using a pressure transducer situated close to the channel assembly.
Plastic or glass tube having diameter 4:763 mm and a length of 50 cm were used. Caliper
measurements showed that the inner radius along the tube length had a maximum variation
of ±0:065 mm.
Isothermal experiments have been conducted to measure the displacement of gas–liquid

interface as a function of the applied pressure di<erential. The velocity of the interface and
the residual liquid ;lm thickness have been determined for Newtonian, non-Newtonian, and
viscoelastic liquids (see Kami2sli [26] for detail). Viscosity was measured using a Haake
Rotovisco (Model RV12) as well as a calibrated glass capillary viscometer. Experiments
were performed in two types of tube arrangement, namely open tubes and valve-mounted
closed tubes. In the tube open to the atmosphere, the tube was initially ;lled with liquid
to a distance of 15 cm. The end of the tube was open to the atmosphere. The velocity of
the gas bubble and displaced liquid were determined using a stop-watch and observed po-
sitions of the gas–liquid interface. The moving bubble attained its ;nal shape within a few

Figure 1. Schematic diagram of the experimental apparatus.
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diameters of the gas injection point and translated unchanged along the length of the tube. The
velocity of the gas bubble and the velocity of the liquid displaced by the gas are depen-
dent upon how much liquid there is between the nose of the bubble and the moving liquid
front.
On the other hand, the valve-mounted closed tubes result in a uniform bubble velocity since

the �ow resistance of the �uid in channel is negligible when compared with the resistance
valve. In this type of arrangement experiments were conducted using a completely ;lled tube.
The maximum variation in the bubble velocity was found to be less than 5 per cent for most
of the test �uids. The capillary numbers were calculated from the average bubble velocity.
In this case, the fraction of liquid deposited on the tube wall was calculated by weighing the
liquid expelled by the long gas bubble since the initial amount of liquid within the tube is
known from the liquid density, tube diameter, and length.
In this paper, the results of valve-mounted closed tubes were presented in order to compare

with the results of numerical solution since the velocity in the numerical solution was taken
to be uniform along the axial direction.

RESULTS OF EXPERIMENT

The fraction of the liquid deposited on the wall of the tube for the di<erent liquids is plotted
in Figure 2 as a function of the capillary number. The experimental data for the Newtonian
�uid are in close agreement with Taylor’s [2] experimental data as can be seen in Figure
2. Di<erent capillary numbers for each tube are obtained by changing the pressure of the
gas. Each experiment was repeated six times in order to check repeatability. The coating
of the liquid on the walls of the tube depends primarily on how fast the gas moves through

Figure 2. The fraction of the liquid deposited on the wall (m) versus Ca for
Newtonian and non-Newtonian �uids.
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the liquid. Increasing gas pressure, larger radii and lower viscosity reduce the �ow resistance
and result in higher bubble velocity and higher residual liquid ;lm thickness on the tube
wall.

Numerical approach

Finite di<erence techniques have been extensively used for the simulation of a wide spec-
trum of �ow situations since the ;nite di<erence approach possesses inherent simplicity of
formulation and ease of mesh re;nement. For problems involving �uids described by com-
plex constitutive relationships, it was deemed appropriate to develop a simple, eMcient, ;nite
di<erence scheme capable of solving steady free surface �ows, in particular gas-assisted �uid
displacement. Reinelt and Sa<man [9] have solved this problem for a Newtonian �uid by
using a ;nite di<erence approach.
Apart from the diMculties associated with the unknown shape and location of the free

surface, another problem arises from the surface boundary conditions which are expressed in
terms of stresses. Traditionally, free surface calculations using either ;nite element or ;nite
di<erence techniques have employed the velocity and pressure as the primitive variables.
For steady �ow problems, if the continuity equation is not solved directly along with the
momentum equations, this primitive variable formulation poses considerable diMculties in
satisfying the mass conservation requirement. If the stream function and vorticity formulation
is employed, mass continuity is satis;ed identically but diMculties are encountered in enforcing
the free surface boundary conditions involving pressure explicitly. Although pressure could
be eliminated by di<erentiation and algebraic manipulation of the momentum equations in
order to remove the pressure gradient, the numerical evaluation of third-order derivatives of
the stream function at the boundary becomes necessary.
The present method, which is based on a stream function and vorticity formulation, obviates

the need for this numerically inaccurate operation. Instead, quasi-linearized forms of the stress
boundary conditions are employed in order to determine the variable values at the interface.
One diMculty associated with this problem is the presence of a singularity and an undetermined
function for the derivative of pressure at the nose of the bubble. Although the velocity in
the axial direction is ;nite, the velocity in the radial direction is equal to zero as x goes to
zero. Therefore the problem should be handled in a di<erent manner at the origin. In order
to eliminate the undetermined function L’Hopital’s rule can be applied.
In this paper, the penetration of a gas bubble into an initially ;lled liquid region consisting

of a Newtonian �uid is considered. It is assumed that the viscosity of the gas is negligible
compared with that of the liquid. It is also assumed that gravitational and inertial forces are
small in comparison with the viscous forces. However, there is no diMculty incorporating the
e<ect of gravity and inertia with the method presented here. Two di<erent geometries are
considered, namely planar and cylindrical.

Mathematical formulation of the two-dimensional and axisymmetric 1ow problem

Consider the motion of a gas bubble into an incompressible Newtonian liquid as shown
schematically in Figure 3. For convenience, velocities are non-dimensionalized by the uniform
velocity ub, the transverse and axial coordinates by the characteristic length d, and the pressure
by 	=d. The characteristic length d is taken to be either the radius of the tube or half of
the distance between the parallel plates. The equation of continuity and motion are given
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Figure 3. Schematic diagram of the gas-assisted displacement.

as follows:
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The parameter a has a value of either 0 or 1 depending on the geometry (0 corresponds to
the planar case and 1 corresponds to a cylindrical geometry). Tij is the viscous part of the
stress tensor and ṗ is the pressure. The velocity components v̇ and u̇ are in the ẋ and ẏ
directions, respectively. The ẏ axis is taken normal to the channel plates (or tube wall)
with the origin at the mid-plane (or tube axis). Thus ẏ has the value of ±d for the planar
case (or d for the cylindrical case) at the solid boundaries. The nose of the bubble moves
along the negative ẋ axis. The origin is assumed to be located at the nose of the bubble
and consequently the velocity is independent of time with respect to this frame of reference.
Dimensionless variables are de;ned as follows:

x= (ẋ − ubṫ)=d; y= ẏ=d; R= Ṙ=d

v= v̇=ub; u= u̇=ub; p= ṗ=(	=d)

In terms of these dimensionless variables Equations (1)–(3) (neglecting inertia) become
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where the capillary number Ca is the ratio of the viscous force to the force due to surface
tension. Incompressibility implies the existence of a stream function  , de;ned as

u= − 1
ya

@ 
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; and v=
1
ya

@ 
@y

(7)

The vorticity !, is de;ned as
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Substituting Equation (7) into Equation (8) yields
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After eliminating pressure from the equations of motion, the vorticity transport equation is
given by
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In addition, the pressure gradients are related to the vorticity by means of the following
relationships
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The appropriate boundary conditions at the interface for the present �ow problem are formu-
lated as follows:
Since the free surface represents a streamline, the surface gradient dy=dx is related to the

surface velocity components by the kinematic boundary condition
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Along the free surface the stress component tangential to the free surface must vanish.
Thus, at y=y(x); 0¡x6+∞[

1−
(
dy
dx

)2]
�xy +

dy
dx
(�yy − �xx)=0 (13)

The normal stress component must be balanced by the tractions due to surface tension forces
and the pressure exerted on the surface by the bubble (gas). Therefore
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where ṗo is the bubble pressure and Ṙ is the total radius of curvature at the interface given by

1
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Since y is a positive term and [(d2y)=(dx2)] a negative one, the 1=R in Equation (14) was
taken with absolute value in order to get correct expression.

�ij is the total stress and is de;ned as
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Since the gas pressure is constant, it is taken to be zero without any loss of generality.
Since the free surface represents a streamline, it is arbitrarily chosen to be zero.
These three interface conditions can be rewritten in terms of the velocity and stream function

as follows:

 =0 and
dy
dx
=

u
v

(16)

!=2ux + 2

dy
dx{

1−
(
dy
dx

)2} (uy − vx) (17)

p=− 1
R
+ 2

Ca[
1 +

(
dy
dx

)2]
{
uy − dy

dx
(vy + ux) +

(
dy
dx

)2
vx

}
(18)

where the notation kl indicates the derivative of k with respect to l. The boundary condition
given by Equation (17) is obtained by combining Equations (8) and (13).

Coordinate transformation and numerical solution

The irregular physical domain (x; y) is transformed to a regular computational domain ($; %)
by means of elliptic grid generation (Thompson et al. [27] and Ho<man and Chang [28]).
This transformed domain $1¡$¡$2 and %1¡%¡%2 is chosen to be the computational ;eld
since the free surface becomes coincident with the %1 boundary, thereby permitting the free
surface conditions to be enforced directly and accurately at the boundary. Both the physical
and computational domains are shown in Figure 4.
Consider the following transformation

x= x($; %) and y=y($; %) (19)
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Figure 4. Schematic diagram of the restricted ;eld in the (a) physical and (b) computational domain.

Therefore the Laplacian is given as follows
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The elliptic grid generation implies that $xx + $yy=0 and %xx + %yy=0 and Equation (20)
becomes
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Similarly Equations (11), (16), (17) and (18) become
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− a
y
!x% + #!$ + )!%

)
y$

x$
=

u
v

(26)

!=2J (y%u$ − y$u%) +
J
(
y$

x$

)
[
1−

(
y$

x$

)2] (x$u% − x%u$ − y%v$ + y$v%) (27)

p=− 1
R
+
2Ca(

[
u% − y$

x$
v% − )

(

(
y$

x$
v$ − u$

)]
[
x$

(
1 +

(
y$

x$

)2)] (28)
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where

#= J (y2% + x2%)

(= J (y2$ + x2$)

)=−J (x%x$ + y%y$)

It is assumed that the shape of the bubble is symmetric about the mid-plane or tube axis and
therefore it is suMcient to solve the problem over the region of positive y. The boundary
conditions are given as:
At the inlet:

*=−a+ 3
2

�a+1(1− y2) + 1 06y61

 =−a+ 3
2

�a+1
(

ya+1

a+ 1
− ya+3

a+ 3

)
+

ya+1

a+ 1
06y61

u=0

!=−(3 + a)�a+1y 06y61 x=−∞

At the outlet

*(x; y) = 1 at y=1 as x→ +∞

 (x; y) =
1

a+ 1
(ya+1 − �a+1)

!=0

u=0

At the axis or mid-plane

*(x; y) =−
(
a+ 3
2

)
�a+1 + 1

 (x; 0) = 0

u(x; 0) = 0

!(x; 0) = 0

At the walls of the planar channel or tube

*(x; 1) = 1

 (x; 1) =
1

a+ 1
(1− �a+1)
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u(x; 1) = 0

!(x; 1) =−*y=−%yv%

The governing relationships are expressed in terms of ;nite di<erences. Central di<erences
(;ve-point formula) for interior grid points and three-point one-sided forward di<erences or
three-point one-sided backward di<erences at the boundaries were used. These yield second-
order accuracy. Thus the vorticity derivatives in terms of ;nite di<erences at the interior grid
points are expressed as follows:

!$$ =
(!i+1; j +!i−1; j − 2!i; j)

(Q$)2
+ 0[(Q$)2]

!%% =
(!i; j+1 +!i; j−1 − 2!i; j)

(Q%)2
+ 0[(Q%)2]

!$ =
(!i+1; j −!i−1; j)

2Q$
+ 0[(Q$)2]

!% =
(!i; j+1 −!i; j−1)

2Q%
+ 0[(Q%)2]

!%$ =
(!i+1; j+1 −!i−1; j+1 −!i+1; j−1 +!i−1; j−1)

4(Q%Q$)

At the boundaries

!$=
(−3!i; j + 4!i+1; j −!i+2; j)

2Q$
+ 0[(Q$)2]

or

!$=
(3!i; j − 4!i−1; j +!i−2; j)

2Q$
+ 0[(Q$)2]

In terms of ;nite di<erences, Equation (24) becomes

!i; j =
1{

2#i; j + 2(i; j

(
d$
d%

)2
+

ai; j(d$)2

y2i; j Ji; j

}

×




#i; j(!i+1; j +!i−1; j) + (i; j

(
d$
d%

)2
(!i; j+1 −!i; j−1)+

)i; j

2
d$
d%
(!i+1; j+1 −!i−1; j+1 −!i+1; j−1 +!i−1; j−1) +

ai; jd$
2yi; j(

−x%(i; j)(!i+1; j −!i−1; j) +
d$
d%

x$(i; j)(!i; j+1 −!i; j−1)
)




(29)
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Similarly all other expressions can be written in ;nite di<erence form with second-order
accuracy.
In order to solve this problem by means of elliptic grid generation the boundary encom-

passing the computational domain must be de;ned. Therefore the governing equations are
solved in the restricted domain xmin¡x¡xmax and 06y61. The restricted domain is a region
occupied by the liquid only.
It is assumed initially that the shape of the bubble is known. This assumed shape permits

generation of the grid points in the computational domain. Since the shape of the bubble is
prescribed, one of the interface boundary conditions can be neglected. Reinelt and Sa<man
[9] dropped the normal stress condition at the interface. This condition is also dropped in our
calculations. The vorticity is calculated using Equation (29) at every interior grid point. The
stream function is then calculated using Equation (23). The velocities are calculated from the
relationships below and the data obtained from Equation (23) for interior grid points

v =
J
ya (x$ % − x% $)

u =
J
ya (y$ % − y% $)

(30)

 is taken to be equal to zero at the interface and the velocity at the interface is calculated
using Equation (30) expressed in terms of three-point one-sided forward di<erences. The
vorticity at the interface and at the wall are calculated using Equation (27) and the expression
below:

!=−Jx$v%

These expressions at the interface and at the wall are written using a three-point one-sided
forward and backward di<erence formulation, respectively. The boundary values are then
used to recalculate the vorticity, stream function and velocity for the interior grid points. The
vorticity and stream function at interior and boundary grid points are then compared with
the previously calculated vorticity and stream function. If the di<erences are not within the
speci;ed tolerance, the calculations are repeated in an iterative manner. Once the vorticity,
stream function and velocity have converged at every grid point location a new interface
position is calculated as follows

ynew =yold +
(
u
v
− y$

x$

)
Q$ (31)

If the di<erence between ynew and yold is not within a speci;ed tolerance at every grid point,
all calculations are repeated. Equation (31) implies that dy=dx= u=v at the interface for each
grid point. During the calculations � is taken to be equal to yIm;1 which is the height or radius
of the bubble at the last grid point. Since some of the boundary conditions depend on � and
� in turn depends on the position of the interface, the boundary conditions change when the
position of the interface changes. Therefore � is replaced by yIm;1 during the calculations in
order to obtain accurate results. The pressure at the interface is calculated using Equation (28)
written in terms of a three-point one-sided forward di<erence. Also, it is not necessary to
estimate the pressure at any point along the interface. The pressure at the interface could also
be determined from Equation (25a) but requires an estimated pressure at the interface at the
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last grid point. In other words, integrating Equation (25a) along the interface requires that
pIm;1 must be speci;ed. Dutta and Ryan [29] took pIm;1 = a=(CayIm;1) + pa. In this paper,
pIm;1 =po − a=(CayIm;1) can be taken in order to estimate the pressure at the interface at the
last grid point. However, in our computation it is not necessary to estimate the pressure. For
the planar case pIm;1 is zero since the value of the pressure in the region where the bubble
becomes uniform is set equal to the constant pressure in the interior of the bubble (which has
been arbitrarily set equal to zero).
Once the pressure is calculated from Equation (28), Equation (25a) is integrated numer-

ically along the interface in order to check the correctness of the solution. In other words,
the pressure drop along the x-axis at the interface was computed using Equation (28) and
compared with the pressure calculated from Equation (25a). If the equation is not satis;ed,
the capillary number is adjusted and the computations are repeated in an iterative manner
until convergence is achieved. The average of the last six grid points along the interface are
selected as the convergence criterion.
As mentioned previously, the particular diMculty associated with this problem is the pres-

ence of a singularity at the origin or the nose of the bubble. From Equation (25a) when
y→ 0; !→ 0, and L’Hopital’s rule must be applied. In addition v is ;nite but u→ 0 when
either x or y→ 0. Fortunately Qx or x% does not go to zero since Qx represents a ;xed dis-
tance between two grid points along the x axis. After applying L‘Hopital’s rule Equation (25a)
becomes

p$=Ca�(ax$x%J − ))!$ − (aJx2$ + ()!%	
Therefore special treatment is necessary at the beginning of the bubble in order to address
the singularity.

Numerical results for two-dimensional and axisymmetric 1ow

Initially the interface position for a ;xed bubble shape is speci;ed. After several iterations the
vorticity, stream function, and velocity converge. The new bubble shape or interface position
is then calculated and computations are repeated. Convergence of the interface location and
boundary conditions is typically achieved within a few iterations. Figure 5 shows the interface
and grid point locations for Ca=3. If the initial estimate of the interface location is nearly
correct, the number of iterations will be greatly reduced. Figure 5 indicates that for Ca=3 a
very reasonable interface is obtained.
The pressure is calculated from Equation (28) and the pressure di<erence across the nose

of the bubble as a function of Ca is shown in Figure 6 for planar case. As can be seen in the
;gure, pressure drop at the nose of the bubble as a function of capillary number di<ers from
the results of Reinelt and Sa<man [9] especially at higher capillary number. This di<erence
can be resulted from the di<erent equations in each paper used for calculating pressure drop.
While pressure drop in the paper by Reinelt and Sa<man [9] was calculated using the equation
for pressure drop in the axial direction, in this paper it was computed from Equation (28)
namely the normal stress boundary condition at the interface. Equation (28) is one of the
three boundary conditions at the interface. The well coming stream function plots and the
results concerning the fraction of liquid deposited on the walls are in good agreement with
experimental data showed that the two other boundary conditions namely the tangential stress
and kinematic boundary conditions at the interface were satis;ed by the presented solution.
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Figure 5. The calculated interface for Ca=3:0.

Figure 6. Pressure drop (Qp) across the nose of the bubble versus Ca for the planar numerical results
(∗) and the numerical results of Reinelt and Sa<man (+).

Therefore, this disagreement concerning pressure drop at the nose of the bubble as a function
of capillary number can be resulted from the calculation of the average lateral radius of the
curvature computed using the modi;ed spline-;tting method. For this calculation 101 grid
points were chosen in the x-direction and 11 grid points in the y-direction (Im =101 and
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Figure 7. The fraction of liquid deposited on the wall (m) versus Ca for the planar numerical results
(∗) and numerical results of Reinelt and Sa<man (◦).

Figure 8. Pressure drop (Qp) across the nose of the bubble versus Ca for the axisymmetric case the
numerical results (∗) and the numerical results of Reinelt and Sa<man (+).

Jm =11). 40 grid points are used before the bubble and 60 grid points are used along the
interface (xmin =−2; xmax =3). Figure 7 shows m=(1−�) versus Ca for the two-dimensional
�ow. As can be seen in Figure 7 our numerical results are in close agreement with those of
Reinelt and Sa<man [9] especially at lower capillary number. At higher capillary number the
disagreement between our numerical data and those of Reinelt and Sa<man [9] is about 8 per
cent. Figure 8 is a plot of pressure versus Ca for the axisymmetric �ow case. Figure 9 shows
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Figure 9. The fraction of liquid deposited on the wall (m) versus Ca for axisymmetric case the numerical
results (∗) and the experimental results of Taylor (◦).

m=(1− �2) versus Ca for axisymmetric �ow. Our numerical results are in close agreement
with the results of Taylor [2] and our experimental data [26] at lower capillary number. The
discrepancy between our numerical data and the results of Taylor [2] exists at higher capillary
number.
As mentioned in the papers by Cox [4] and Reinelt and Sa<man [9], for � greater than

(1=A)1=(a+1) the �uid near the x-axis �ows away from the bubble with a higher velocity than
that of the bubble (where A=1:5 for the planar case and A=2 for the axisymmetric case).
The streamlines for those �ows were discussed by Taylor [2] and Cox [4]. If � is smaller
than (1=A)1=(a+1), v is negative and the �uid on the x axis �ows towards the bubble and there
is a stagnation point at the origin.
In this method k (exponential decay rate) cannot be determined as x→+∞. However, it is

not necessary to determine the value of k. The numerically calculated value of m=(1− �) is
given as a function of Ca and compared with the numerical results of Reinelt and Sa<man [9]
in Figure 7. The interface was obtained using Equation (31). In this paper the average lateral
radius of curvature was computed using a technique similar to that employed by Reddy and
Tanner [30]. The method called modi;ed spline-;tting is employed using two neighboring
surface elements along with a purely geometrical procedure.

CONCLUSION

In the present approach inertia and gravity have been neglected but can be incorporated very
easily. The problem formulation is solved by using elliptic grid generation which provides
�exibility for di<erent geometry and free surface con;gurations. The advantages of using
elliptic grid generation are the smooth grid point distribution, one-to-one transformation, and
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the fact that complex boundary conditions are easily treated. The grid construction takes
very little time in comparison with the time for calculating the interface of the gas-assisted
displacement problem.
In this method an accurate determination of the fraction of liquid deposited on the walls

of the channel can be obtained. In this approach, the bubble shape and �ow ;eld are a weak
function of the capillary number although experiments indicate that the e<ect of capillary
number is very important in determining the shape of the bubble. The region near the nose
of the bubble needs to be treated in a special way due to the presence of a singularity. The
pressure drop across the bubble front increases with increasing capillary number for both
the planar and axisymmetric case. The results of the numerical solution are in very good
agreement with the experimental data.
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